详情
简介
在LiFePO体结构中,氧原子呈六方紧密堆积排列。PO四面体和FeO6八面体构成晶体的空间骨架,Li和Fe占据八面体空隙,而P占据四面体空隙,其中Fe占据八面体的共角位置,Li占据八面体的共边位置。FeO6八面体在晶体的bc面上相互连接,b轴方向上的LiO6八面体结构相互连接成链状结构。1个FeO6八面体与iO6八面体和1个PO四面体共棱。
由于FeO6共边八面体网络不连续,致使不能形成电子导电;同时,PO四面体限制了晶格的体积变化,影响了Li+的脱嵌和电子扩散,导致LiFePO材料电子导电率和离子扩散效率极低。
LiFePO的理论比容量较高(约为170mAh/g),放电平台是3.Li+在正负两极之间往返脱-嵌实现充放电,充电时发生氧化反应,Li+从正极迁出,经电解液嵌入负极,铁从Fe成Fe3+,发生氧化反应。
电池结构特点
磷酸铁锂电池左边是橄榄石结构的LiFePO构成的正极,由铝箔与电池正极连接。右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。中间是聚合物的隔膜,它把正极与负极隔开,锂离子可以通过隔膜而电子不能通过隔膜。电池内部充有电解质,电池由金属外壳密闭封装。
电池充放电原理
磷酸铁锂电池的充放电反应是在LiFePOePO之间进行。在充电过程中,LiFePO脱离出锂离子形成FePO放电过程中,锂离子嵌入FePOLiFePO
电池充电时,锂离子从磷酸铁锂晶体迁移到晶体表面,在电场力的作用下,进入电解液,然后穿过隔膜,再经电解液迁移到石墨晶体的表面,而后嵌入石墨晶格中。
与此同时,电子经导电体流向正极的铝箔集电极,经极耳、电池正极柱、外电路、负极极柱、负极极耳流向电池负极的铜箔集流体,再经导电体流到石墨负极,使负极的电荷达至平衡。锂离子从磷酸铁锂脱嵌后,磷酸铁锂转化成磷酸铁。
电池放电时,锂离子从石墨晶体中脱嵌出来,进入电解液,然后穿过隔膜,经电解液迁移到磷酸铁锂晶体的表面,然后重新嵌入到磷酸铁锂的晶格内。
与此同时,电子经导电体流向负极的铜箔集电极,经极耳、电池负极柱、外电路、正极极柱、正极极耳流向电池正极的铝箔集流体,再经导电体流到磷酸铁锂正极,使正极的电荷达至平衡。锂离子嵌入到磷酸铁晶体后,磷酸铁转化为磷酸铁锂。
磷酸铁锂电池的特点
能量密度较高
据报道,8年量产的方形铝壳磷酸铁锂电池单体能量密度在160Wh/kg左右,9年一些优秀的电池厂家大概能做到175-180Wh/kg的水平,个别厉害的厂家采用叠片工艺、容量做得大些,或能做到185Wh/kg。
安全性能好
磷酸铁锂电池正极材料电化学性能比较稳定, 这决定了它具有着平稳的充放电平台,因此,在充放电过程中电池的结构不会发生变化,不会燃烧爆炸,并且即使在短路、过充、挤压、针刺等特殊条件下,仍然是非常安全的。
循环寿命长
磷酸铁锂电池1C循环寿命普遍达0次,甚至达到3500次以上,而对于储能市场要求达到0-5000次以上,保证8-10年的使用寿命,高于三元电池1000多次的循环寿命,而长寿命铅酸电池的循环寿命在300次左右。
磷酸铁锂的合成
磷酸铁锂的合成工艺已基本完善,主要分为固相法和液相法。其中以高温固相反应法*为常用,也有研究者将固相法中的微波合成法及液相法中的水热合成法结合使用——微波水热法。
另外,磷酸铁锂的合成方法还包括仿生法、冷却干燥法、乳化干燥法、脉冲激光沉积法等,通过选择不同的方法,合成粒度小、分散性能好的产物,可以有效缩短Li+的扩散路径,两相间的接触面积增大,Li+的扩散速度加快。
磷酸铁锂电池工业应用
新能源汽车行业的应用
我国《节能与新能源汽车产业发展规划》中提出“我国新能源汽车发展的总体目标是:到0年,新能源汽车累计产销量达到500万辆,我国节能与新能源汽车产业规模位居世界前列”。磷酸铁锂电池由于其在安全性好、成本低等优点广泛应用于乘用车、客车、物流车、低速电动车等,虽然,在当前新能源乘用车领域,受**对新能源汽车补贴政策影响,凭借能量密度的优势,三元电池占据着主导地位,但是磷酸铁锂电池仍在客车、物流车等领域占据不可替代的优势。客车领域,磷酸铁锂电池在8年第5批、第6批、第7批《新能源汽车推广应用推荐车型目录》( 以下简称《目录》)中占比约为76%、81%、78%,依旧保持主流。专用车领域,磷酸铁锂电池在8年第5批、第6批、第7批《目录》中占比分别约30%、3,应用比例逐步增加。
中国工程院院士杨裕生认为,将磷酸铁锂电池用于增程式电动汽车市场,不但能提高车辆的安全性,还能支持增程式电动汽车的市场化,免除纯电动汽车的里程、安全、价格、充电、后续电池问题等焦虑。在7 年-3年期间,许多车企都上马了增程式纯电动汽车的项目。
启动电源上的应用
启动型磷酸铁锂电池除具备动力锂电池特性外,还具备瞬间大功率输出能力,用能量小于一度电的功率型锂电池代替传统的铅酸电池,用BSG电机代替传统的启动电机和发电机,不但具有怠速启停功能,还具有发动机停机滑行、滑行与制动能量回收、加速助力和电巡航功能。
储能市场的应用
磷酸铁锂电池具有工作电压高、能量密度大、循环寿命长、自放电率小、无记忆效应、绿色环保等一系列独特优点,并且支持无级扩展,适合于大规模电能储存,在可再生能源发电站发电安全并网、电网调峰、分布式电站、UPS电源、应急电源系统等领域有着良好的应用前景。
根据**市场研究机构GTM Research近日发布的*新储能报告显示,8年中国的电网侧储能项目的应用却使磷酸铁锂电池用量持续增加。
随着储能市场的兴起,近年来,一些动力电池企业纷纷布局储能业务,为磷酸铁锂电池开拓新的应用市场。一方面,磷酸铁锂由于超长寿命、使用安全、大容量、绿色环保等特点,可向储能领域转移将会延长价值链条,推动全新商业模式的建立。另一方面,磷酸铁锂电池配套的储能系统已经成为市场的主流选择。据报告,磷酸铁锂电池已经尝试用于电动公交车、电动卡车、用户侧以及电网侧调频。
1风力发电、光伏发电等可再生能源发电安全并网。风力发电自身所固有的随机性、间歇性和波动性等特征,决定了其规模化发展必然会对电力系统安全运行带来显著影响。随着风电产业的快速发展,特别是我国的多数风电场属于“大规模集中开发、远距离输送”,大型风力发电场并网发电对大电网的运行和控制提出了严峻挑战。
光伏发电受环境温度、太阳光照强度和天气条件的影响,光伏发电呈现随机波动的特点。我国呈现出“分散开发,低电压就地接入”和“大规模开发,中高电压接入”并举的发展态势,这就对电网调峰和电力系统安全运行提出了更高要求。
因此,大容量储能产品成为解决电网与可再生能源发电之间矛盾的关键因素。磷酸铁锂电池储能系统具有工况转换快、运行方式灵活、效率高、安全环保、可扩展性强等特点,在**风光储输示范工程中开展了工程应用,将有效提高设备效率,解决局部电压控制问题,提高可再生能源发电的可靠性和改善电能质量,使可再生能源成为连续、稳定的供电电源。
随着容量和规模的不断扩大,集成技术的不断成熟,储能系统成本将进一步降低,经过安全性和可靠性的长期测试,磷酸铁锂电池储能系统有望在风力发电、光伏发电等可再生能源发电安全并网及提高电能质量方面得到广泛应用。
调峰。电网调峰的主要手段一直是抽水蓄能电站。由于抽水蓄能电站需建上、下两个水库,受地理条件限制较大,在平原地区不容易建设,而且占地面积大,维护成本高。采用磷酸铁锂电池储能系统取代抽水蓄能电站,应对电网尖峰负荷,不受地理条件限制,选址自由,投资少、占地少,维护成本低,在电网调峰过程中将发挥重要作用。
3分布式电站。大型电网自身的缺陷,难以保障电力供应的质量、效率、安全可靠性要求。对于重要单位和企业,往往需要双电源甚至多电源作为备份和保障。磷酸铁锂电池储能系统可以减少或避免由于电网故障和各种意外事件造成的断电,在保证医院、银行、指挥控制中心、数据处理中心、化学材料工业和精密制造工业等安全可靠供电方面发挥重要作用。
S电源。中国经济的持续高速发展带来的UPS电源用户需求分散化,使得更多的行业和更多的企业对UPS电源产生了持续的需求。
磷酸铁锂电池相对于铅酸电池,具有循环寿命长、安全稳定、绿色环保、自放电率小等优点,随着集成技术的不断成熟,成本的不断降低,磷酸铁锂电池在UPS电源蓄电池方面将得到广泛应用。
其他领域的应用
磷酸铁锂电池因其良好的循环使用寿命、安全性、低温性能等优势,在军事领域也得到的广泛的应用。8 年10月10日,山东某电池企业强势亮相首届青岛军民融合科技创新成果展,展出了包括-军用超低温电池等军工产品。
磷酸铁锂电池储能系统
磷酸铁锂电池具有工作电压高、能量密度大、循环寿命长、绿色环保等一系列独特优点,并且支持无级扩展,组成储能系统后可进行大规模电能储存。磷酸铁锂电池储能系统由磷酸铁锂电池组、电池管理系统(Battery Management System,BMS)、换流装置(整流器、逆变器)、中央监控系统、变压器等组成。
充电阶段,间歇式电源或电网为储能系统进行充电,交流电经过整流器后整流为直流电向储能电池模块进行充电,储存能量;放电阶段,储能系统向电网或负载进行放电,储能电池模块的直流电经过逆变器逆变为交流电,通过中央监控系统控制逆变输出,可实现向电网或负载提供稳定功率输出。
磷酸铁锂电池的梯次利用
一般来说,电动车退役磷酸铁锂电池仍有接近80%的容量剩余,距离60%彻底报废容量下限仍有的容量,可用于比汽车电能要求更低的场合,如低速电动车、通讯基站等,实现废旧电池的梯次利用。从汽车上退役下来的磷酸铁锂电池仍有较高的利用价值。动力电池的梯次利用流程如下:企业回收退役电池—拆解—检测分级—按容量分类—电池模块重组。在电池制备水平下,废旧磷酸铁锂电池的剩余能量密度可以达到60~90Wh/kg,再循环寿命可以达到~1000次,随电池制备水平的提高,再循环寿命还可能进一步提升,与能量为h/kg、循环寿命约500次的铅酸电池相比,废旧磷酸铁锂电池仍然具有性能优势。而且废旧磷酸铁锂电池成本较低,仅为0~10000元/t,具有很高的经济性。
磷酸铁锂电池的回收特点
增长迅速,报废量大
自电动车行业发展以来,中国是全球磷酸铁锂*大的消费市场。尤其是013年以近%的速率在增长,3年中国磷酸铁锂的销量约为5797t,占全球销量的50%以上。
75%的磷酸铁锂正极材料销售到 中国,磷酸铁锂电池的理论寿命为7~8年( 以7年计算),可预计到1年将有约9t的磷酸铁锂报废,如此庞大的废弃量如若不加以处理,带来的不仅仅是环境污染,更是能源浪费以及经济损失。
危害显著
磷酸铁锂电池中含有的LiPF6、有机碳酸酯、铜等化学物质均在**危险废物名录中。LiPF6有强烈的腐蚀性,遇水易分解产生HF;有机溶剂及其分解和水解产物会对大气、水、土壤造成严重的污染,并对生态系统产生危害;铜等重金属在环境中累积,*终通过生物链危害人类自身;磷元素一旦进入湖泊等水体,极易造成水体富营养化。由此可见,如若对废弃的磷酸铁锂电池不加以回收利用,对环境及人类健康都是极大危害。
回收技术不成熟
现有的资料表明,废旧磷酸铁锂电池的回收处理分为两种:一种是回收金属,另一种是再生磷酸铁锂正极材料。
(1)湿法回收锂和铁
此类工艺以回收锂为主,因磷酸铁锂不含有贵金属,故对钴酸锂的回收工艺进行改造。首先将磷酸铁锂电池拆解得到正极材料,粉碎筛分得到粉料;之后将碱溶液加入到粉料中,溶解铝及铝的氧化物,过滤得到含锂、铁等的滤渣;将滤渣用硫酸与双氧水(还原剂)的混合溶液浸出,得到浸出液;加碱沉淀氢氧化铁,过滤得到滤液;灼烧氢氧化铁,可得氧化铁;*后调节浸出液的pH值(5.0 ~8.0),过滤浸出液得滤液,加固体碳酸钠浓缩结晶得碳酸锂。
(生磷酸铁锂
单一回收某种元素使得不含有贵重金属的磷酸铁锂回收产生的经济效益比较低。因此,主要是固相法再生磷酸铁锂处理废旧磷酸铁锂电池,此工艺具有很高的回收效益,且资源的综合利用率高。
首先将磷酸铁锂电池拆解得到正极材料,粉碎筛分得粉料;之后热处理去除残留的石墨和粘结剂,再将碱溶液加入到粉料中,溶解铝及铝的氧化物;过滤得含锂、铁等的滤渣,分析滤渣中铁、锂、磷的摩尔比,添加铁源、锂源和磷源,将铁、锂、磷的摩尔比调整为1∶1∶1;加入碳源,球磨后在惰性气氛中煅烧得到新的磷酸铁锂正极材料。
回收利用体系不完善
**“863”计划、“973”计划和“十一五”高技术产业发展规划均将磷酸铁锂电池划分为重点支持领域,但该电池生产技术要求比较严格,导致电池价格较高,仅用于电动摩托车和少量的汽车上。因此,车用动力电池尚未出现大批量报废的情况,系统专业的车用动力电池回收利用体系亦尚未建立。现有的回收体系存在一定的问题,而且回收效率低下。
这种问题主要由以下几方面造成:
(1)可回收量少
大量的废旧电池分散在国民手中,但是民众没有投放的地方,因而随着生活垃圾一起处理,从而使得从个人中回收的报废电池几乎为零,绝大部分回收的是生产企业生产过程中产生的废料或者是库存旧料,回收到的大型动力电池数量更是少之又少。
(收系统不健全
专门回收电池的系统国内尚未建立,主要是小作坊的粗放式收集。我国是锂离子电池的生产及消费大国,但由于人口众多,使得电池人均保有量相对较少。长久以来回收公司对不具有回收价值的单个锂离子电池并未进行回收。
(3)准入门槛高
企业欲从事废旧电池的回收与处理,必须按照《中华人民共和国环境保护法》和《危险废物经验许可证管理办法》的规定申请危险废物经营许可证,但是能达到大规模回收资质的企业并不多,反而是那些规模小、技术低下的公司数量众多,造成电池无法集中收集的难题。
(收成本高
大量的磷酸铁锂材料应用于动力或储能电池正极,需求量远远大于普通小型电池,对其进行回收具有很高的社会价值,但回收成本较高,且磷酸铁锂电池中不含有贵重金属,经济价值较低。
(5)回收意识薄弱
长期以来,我国对于废旧电池回收利用方面的宣传教育很少,致使公民缺乏对于废旧电池污染危害的深入认识,没有形成自觉回收的意识。
磷酸铁锂电池的拆解回收
退役磷酸铁锂电池中不具备梯次利用价值的电池及梯次利用后的电池*终要进入到拆解回收阶段。磷酸铁锂电池与三元材料电池不同的是,不含重金属,回收主要是Li、P、Fe,回收产物附加值较低,需要开发低成本的回收路线。主要有火法和湿法收方式。
火法回收工艺
传统的火法回收一般是高温焚烧电极片,将电极碎片中的碳和有机物燃烧掉,不能被燃烧掉的剩余灰分*终经筛选得到含有金属和金属氧化物的细粉状材料。该法工艺简单,但处理流程长,有价金属综合回收率较低。改进后的火法回收技术是通过煅烧去除有机粘结剂,使磷酸铁锂粉末与铝箔片分离,获得磷酸铁锂材料,之后再在其中加入适量原料以得到所需的锂、铁、磷的摩尔比,经高温固相法合成新的磷酸铁锂。据成本测算,磷酸铁锂废旧电池经改进后的火法干法回收,可实现盈利,但按此回收工艺新制备的磷酸铁锂杂质多,性能不稳定。
湿法回收工艺
湿法回收主要是通过酸碱溶液溶解磷酸铁锂电池中的金属离子,进一步利用沉淀、吸附等方式将溶解的金属离子以氧化物、盐等形式提取出来,反应过程中多数使用HaOH和H等试剂。湿法回收工艺简单,设备要求不高,适合工业规模化生产,是学者们研究的*多,也是国内主流的废旧锂离子电池处理路线。
磷酸铁锂电池湿法回收以回收正极为主。采用湿法工艺回收磷酸铁锂正极时,首先要将铝箔集流体与正极活性物质分离。方法之一是采用碱液溶解集流体,而活性物质不与碱液反应,可以通过过滤获得活性物质。方法之二是用有机溶剂溶解粘结剂PVDF,使磷酸铁锂正极材料与铝箔脱离,铝箔重新利用,活性物质可进行后续的处理,有机溶剂可经过蒸馏处理,实现其循环使用。两种方法相比,第二种更环保安全。正极中磷酸铁锂的回收一种是生成碳酸锂。此种回收方式成本较低,被多数磷酸铁锂回收企业所采纳,但磷酸铁锂的主要成分磷酸铁(含量95%)没有被回收,造成资源浪费。
较理想的湿法回收方式为将废旧磷酸亚铁锂正极材料转化为锂盐和磷酸铁,实现Li、Fe、P的全元素回收。磷酸亚铁锂要想变成锂盐和磷酸铁,需要将亚铁氧化为三价铁,采用酸浸或碱浸将锂浸出。有学者采用氧化煅烧分离出铝片及磷酸铁锂,之后经硫酸浸出、分离得到粗磷酸铁,溶液除杂用碳酸钠沉淀成碳酸锂;滤液蒸发结晶得到无水硫酸钠产品作为副产物出售;粗磷酸铁进一步精制得到电池级磷酸铁,可以用于磷酸铁锂材料的制备。该工艺经过多年的研究,已经相对成熟。
版权:比亚迪叉车 所有文章版权归原作者所有!转载请注明出处:http://www.2912688.com/119.html
* 特此声明
1.凡注明来源"比亚迪叉车”的所有文字、图片和音视频资料,版权均属比亚迪叉车所有。若需转载需注明新闻来源及链接,违者本网将依法追究责任。
2.本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点。其他媒体、网站 或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
3.如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
还没有评论呢,快来抢沙发~!